Accueil.

Les  simulations de  ce site ont majoritairement trait à la Physique enseignée dans le premier et second cycle des Universités. Elles peuvent être utilisées par les étudiants, mais surtout être montrées en cours par le professeur, pour illustrer ses démonstrations. Les exécutables, ces programmes à télécharger (gratuitement) à partir de ce site, qui vous permettront de démarrer une simulation par un simple clic, sont des .jar, c’est à dire qu’ils ont été écrits en Java et nécessitent un téléchargement de ce langage  (gratuit, depuis le site de la société Oracle à l’exclusion de tout autre). Il est sans doute préférable d’avoir une version moderne de Java (Java 7 et 8 sont les versions utilisées).
Ici sont simulés des phénomènes physiques suivants:

–appareils d’optique: interféromètres de Michelson-Morley, de Fabry-Pérot, dispositifs de trous d’Young, appareils d’optique géométrique  à une ou plusieurs lentilles (dioptres, microscope, lunette de Galilée, ou l’oeil), et enfin une simulation des relations de Fresnel, avec application à l’angle de Brewster.

Lien vers une descrition  et le téléchargement, dans ce site:                                     optique

–gaz à deux dimensions, dans le but d’illustrer la théorie cinétique des gaz,

Lien:    gaz-a-deux-dimensions

–chaine d’atomes, et phénomènes de propagation à une dimension, décomposition en ondes stationnaires, etc…

Lien: chaine d’atomes ou de ressorts

–équilibre électrique de conducteurs cylindriques parallèles.

Lien   Fils en équilibre électrique

–chambres de Charpak, détecteurs de particules chargées.

Lien:         chambres à fils de Charpak.

–physique des particules: les quarks, décrit dans un modèle naïf qui permet de voir de quoi il s’agit. Ce programme est une vulgarisation.

Lien:      Un modèle naïf de la physique des quarks.

— Dipoles électriques et magnétiques, volumes diélectriques et ferromagnétiques.

Lien:       dipoles, susceptibilité

Les simulations précédentes ne tiennent pas compte en général de la mécanique quantique.

Etude du paquet d’ondes, effet tunnel et états propres des puits de potentiel (en mécanique quantique):

Lien:                   paquet d’ondes, effet tunnel

Etude des moments cinétiques, en mécanique classique, puis en mécanique quantique. Leurs liens avec les règles de sélection, utilisant les symétries des interactions:

Lien:                       Moments cinétiques et symétries.

Pour accéder à une simulation, cliquer sur son titre dans la colonne de gauche (en Anglais ou en Français) ou sur le lien correspondant ci-dessus.

Welcome

Simulations of this site are principally related to physics taught in universities for under-graduate students; but some of them can also interest curious peoples with some background. They can be be shown, during lectures,  by the professor, to support demonstrations or illustrateused, and also  by students. Executables , programs which start with a  double click,  are to be downloaded (it’s free) from this site; they  are .jar, that is they are written in Java and require a download into your computer of this language (free from the site of the Oracle Corporation) . It is probably better to have a modern version of Java (Java 7 is the version used here). Quantum mechanics is not used here, except for the tunnel effect and stationary states in potential wells.
Here are simulated the following physical phenomena:


– Optical devices : Michelson- Morley interferometer , Fabry-Perot devices, Young-slits, and also
devices of geometrical optics: diopters , lenses, microscope, Galileo telescope, or the eye.

Link to a more precise description and also downloading of executables: 

                                  optics

-gas in two dimensions , in order to illustrate the kinetic theory of gases ,

Link: Two dimension gas


– chain of atoms and propagation phenomena in one dimension decomposition into stationary waves, etc …

Link:   chain of atomes or springs


– electrical balance of parallel cylindrical conductors ,

Link: Electric equilibrium of conductors


– wire chambers (Charpak chambers), charged particles  detectors .

Link:  Wire chambers of Charpak.


– electric and magnetic dipoles, and dielectrics and ferromagnetic materials in an external field.

Link: Dipoles, susceptibility

– physics of particles: quarks , described in a naive model, only to show what it consists of.

Link:   A naive quark model

Studies of wave packets, of tunnel effect and of stationary states of  potential wells (quantum mechanics):

Lien:                   wave packet, tunnel effect, potential wells

To have access to a simulation, you may also  click on its title in the left column.

 

Kinetic momenta and symmetries.

The kinetic moments, in classical mechanics, have many applications: gyroscope, bicycle, nutation of  stars … We use them here in atomic physics, by describing the ancient planetary model of the hydrogen atom, where the electron revolves around the proton, its centrifugal force balancing the electromagnetic attraction force. This model is now abandoned, but it shows that  the concept of kinetic momentum is useful  in atomic physics.

In quantum mechanics, this concept plays an even more important role, though completely different. The « wave functions », which govern the probabilities of presence for all the points of space defined by  polar and azimutal coordinates , depend of kinetic moments, and the values ​​of these are proportional to integers or half-integers. First, we illustrate these wave functions in polar coordinates and more specifically the effects of the Parity operation, which consists of comparing the wave function at a point and the point opposite to it in space (at « antipodes » for a planet).

As certain kinetic moments are, for isolated systems, « constants of the movement » (they do not vary with time whatever the interactions), we understand then that they play a preponderant role in the disintegration of  elementary particles: we thus arrive at selection rules, linked to the rules of symmetry of the interactions producing these decays, strong, electromagnetic, or weak interactions; for the first two, the Parity is conserved;  for the neutral initial states (zero charge and strangeness), the conjugation of Charge C (particle-anti-particle symmetry, or positive charge-negative charge) is also conserved; for strong interactions, the « Parity G », or isotopic independence, is preserved. It is these relations between P, C and G as a function of the kinetic moments which are illustrated for the decays of the « light » mesons, comprising only two of the three lightest quarks.

moments-cinétiques et symétries

Les moments cinétiques, en mécanique classique, ont de nombreuses applications: gyroscope, bicyclette, nutation des étoiles… Nous les abordons ici en physique atomique, en décrivant l’ancien  modèle planétaire de l’atome d’hydrogène, où l’électron tourne autour du proton, sa force centrifuge équilibrant la force d’attraction électromagnétique. Ce modèle est maintenant abandonné, mais il montre l’utilité du concept de moment cinétique en physique atomique.

En mécanique quantique, ce concept joue un rôle encore plus important, quoique complètement différent. Les « fonctions d’onde », qui régissent les probabilités de présence pour tous les points de l’espace, dépendent, en coordonnées polaires des moments cinétiques, et les valeurs de ces derniers sont proportionnelles à des entiers ou demi-entiers. Dans un premier temps, nous illustrons ces fonctions d’onde  en coordonnées polaires et plus spécialement les effets de l’opération Parité, qui consiste comparer la fonction d’onde en un point et au point qui lui est opposé dans l’espace (aux « antipodes »  pour une planète) .

Comme certains moments cinétiques sont, pour des systèmes isolés, des « constantes du mouvement » (ils ne varient pas au cours du temps quelles que soient les interactions), on conçoit alors qu’ils jouent un rôle prépondérant dans la désintégration des particules élémentaires: on arrive ainsi à des règles de sélection, liées aux règles de symétrie des interactions produisant ces désintégrations, interactions fortes, électromagnétiques, ou faibles; pour les deux premières, la Parité est conservée, ainsi que, pour les états initiaux neutres,  la conjugaison de Charge C (symétrie particule-anti-particule, ou  charge positive-charge négative) ; pour les interactions fortes, la « Parité G », ou indépendance isotopique, est conservée. Ce sont ces relations entre P,C et G en fonction des moments cinétiques qui sont illustrées pour les désintégrations des mésons « légers »,  ne comprenant que deux des trois quarks les plus légers.

Pour télécharger le programme

 

Dipoles, susceptibility

An electric dipole  est composed of two electric charges  -q et -+q set at a distance  λ: d=qλ . A magnetic dipole  est composed  of a small  loop of current I and of surface s: d=Isn, where n est la positive normal . The fields  of the two kinds of  dipoles are closely  similar.

The program, which  you may download, in its first  part, allows to compare  field lines from  differents dipoles et quadripoles (two identical neighbour dipôles) and  to vary their parameters.

In its second part, you may see and compare volumes, made of dielectric and ferromagnetic material, put inside an external  uniform field , so that they  are ensembles of dipoles. Charges and currents  neutralize themselves inside the volume, but not at its surface. . Resulting  fields are shown, with  their field lines,  together with surface densities of charge and current. Shown  volumes are: a sphere, an ellipsoid of revolution (rugby ball ) and a cylindric bar  of  finite length.

To get the executable, please click below:
https://github.com/LAL/dipoles-susceptibilite/releases/

dipoles, susceptibilité

Un dipôle électrique est composé de deux charges électriques -q et -+q distantes d’une longueur λ: d=qλ . Un dipole magnétique est composé d’une petite spire de courant I et de surface s: d=Isn, où n est la normale positive. Les champs des deux sortes de dipôles sont très similaires.

Le programme, que vous pouvez télécharger, vous permet, dans une première partie,  et de varier les paramètres des dipôles et d’en visualiser les lignes de champs. Des quadripôles (deux dipôles identiques voisins) sont également montrés.

Dans une seconde partie, vous pourrez voir et comparer  des volumes diélectriques et ferromagnétiques placés dans un champ extérieur uniforme;  ce sont alors des ensembles de dipôles orientés par le champ. Dans ces deux cas, les charges et courants se retrouvent en surface.  Les champs résultants sont montrés, avec les lignes de champ. Les volumes sont: une boule, un ellipsoïde de révolution (ballon de rugby) et un barreau cylindrique de longueur finie.

Wire chambers of Charpak.

 Wire chambers can locate,   in a gas,  high energy charged elementary particles such as electrons or protons,  and  follow their path, which can for example be deflected by a magnetic field.
     Very thin metallic wires are stretched between two parallel metal plates connected to ground, and charged at high voltages (some thousands volts). The chamber contains a gas whose small electric discharges at the crossing of high-energy charged particles are analysed.
     In all cases , the electric characteristics  are shown (fields at different points and equipotentials ) , which is an excellent example of electric equilibrium of conductors.

To get the executable, please click below:
https://github.com/LAL/chambres-de-Charpak/releases/
 

Two dimensional gas.

A two-dimensional gas with a maximum of 2000 circular molecules is proposed , in order to illustrate the kinetic theory of gases . The physical properties are the same as for three-dimensional: laws of Mariotte , entropy, Maxwell distribution , local particle densities from Poisson law, law of Dulong and Petit , etc. …. A « spin » can be attributed to the particles. The interaction between particles is the default billiard balls , but you can choose to have no interaction at all, or to have a harmonic interaction of limited range. Thus we can verify the importance of the nature of interactions such as the particle diameter or density , on the properties of gas , pressure, entropy …. Two neighboring gas may be selected for comparison . The envelop of the gas can be either inert (reflection without energy loss) or not , which allows you to check the laws of entropy change . Composite particles can be generated from elementary particles. A piston may also be moved between two gases .

 

 

Optics

This module about optics includes simulations about:
– Michelson-Morley and Fabry-Perot 
interferometers. In the latter case, we added simulations of parallel  face slide in transmission and reflection (in this case it is a metallic mirror on one side).

-Slits of young.

– geometrical optics devices: diopters, lenses, eye, microscope, binoculars and telescope of Galileo.

To get the  executable, please click below:

Electric equilibrium of conductors.

We deal here with the equilibrium of  parallel metallic conductors .

The axis of conductors are perpendicular to the screen . The electric field is zero inside the conductor and there are charges only at their outer surface.
The electric field is , just outside of these, on the one hand perpendicular to the surface and on the other hand proportional to the charge density at  local surface. The surface charge density can therefore be indicated by the fields at the exit of conductoers, and this is what is done here. The charges are positive for emerging fields from the conductor, negative for entering those .
These properties are enough to determine the electrical fields throughout the space , once known total charge per unit length of each cylindrical conductor.
We consider the case of N conductors ( N < = 4) , whether or not located inside a « wrapping »
hollow conductor and whose charge is opposite to the sum of the charges of then N conductors ( to satisfy the Gauss theorem ); this « wrapping » conductor is actually always present, but situated at infinity , which allows the total nullity charges . The radii of the conductors , their positions and their charges can be varied at will .

To get the  executable, please click below:

https://github.com/LAL/Equilibre-electrique-des-conducteurs/releases